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Abstract. A quasi one-dimensional kinetic Ising-like model is developed to study relaxa- 
tion phenomena in linear polymer chains. In the case where the number Nof bonds in the 
chain is very large. the model Hamiltonian reduces to the one giviog the intramolecular 
energyof the Gibbs-di Mamo lattice model. The equations governing the dynamics of the 
different correlation functions are derived for this model and used to study relaxation 
phenomena in the system in the long-chain limit. First, the dielecrric response where two 
cases are considered, namely, a single dipole placed in the middle of the chain and Nnon- 
interacting dipoles. In both cases a Debye behaviour is obtained. The effect of the 
temperature is introduced by considering a temperature-dependent relaxation time and 
surprisingly good agreement between the temperature dependence of the frequency of the 
maximum of the loss curve as computed with the model and experimental data of PMA and 
WAC is obtained. Second, the relaxational heat capacity is analogously calculated; in this 
case, however. although the parameters used in the actual computations correspond to 
PMA and WAC, respectively. no comparison with actual experimental results was feasible. 
One finds that here the behaviour is not Debye and no simple universality arises from the 
theoretical predictions. 

1. Introduction 

The glass transition in supercooled liquids has been the subject of numerous studies in 
the past few decades. Experimentally, the techniques that have been most widely 
employed to probe the response of the system to an external perturbation include 
ultrasonic absorption, thermal spectroscopy, dielectric relaxation, photon-correlation 
spectroscopy and light and neutron scattering. This response may be described either 
as a function of time @(t) or as a function of frequency +(U) (generalized suscepti- 
bility) which are of course simply related to each other. The theoretical calculation of 
@(t) or q ( w )  in terms of molecular parameters rests on the possibility of devising a 
microscopic model in which the main characteristics of glass-forming systems are 
embodied. This is clearly an unresolved problem in general and hence for convenience 
of the analysis many empirical expressions involving adjustable parameters have been 
widely used; Two common forms for q(w) and q ( t )  are the so-called Cole-Davidson 
formula 
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and the Kohlrausch-Williams- Watts (KWW) expression 

@(t) = exp( - t/z)b 

where z is the relaxation time, and B and b are two parameters whose value lies 
betwen zero and one. In the case that B = b = 1 these two relations reduce to those of 
the ideal linear Debye relaxation process. 

On the other hand, there is ample evidence that some kind of ‘universality’ is 
present both in the anomalous kinetic properties and in the abrupt changes in 
thermodynamic properties exhibited by supercooled liquids in the vicinity of their 
glass transition. This suggests that a theory for the kinetic properties of glass-forming 
systems should be intermingled with equilibrium considerations. In particular, despite 
still being a source of controversy conceming its ability to actually model the glass 
transition, a rather successful model for the description of the thermodynamic 
properties of linear polymers around the glass transition temperature Tg is due to 
Gibbs and di Marzio 111. The aim of this paper is to develop a stochastic model for 
relaxation phenomena in linear polymers whose Hamiltonian is closely related to the 
one of the Gibbs-di Marzio theory. 

As discussed below, the Hamiltonian in our stochastic model is Ising-like. It must 
be stressed that the use of kinetic Ising models for polymer dynamics to model 
cooperativity is not new [2, 31. The novel features introduced in this paper are, on the 
one hand, the explicit connection with the microscopic parameters of a successful 
equilibrium model and on the other a ‘rule of transition’ that, while related to the 
Glauber dynamics [4], also incorporates the basic element of the equilibrium model 
(the notion of a ‘flex’, to be specified later) into the dynamics. 

We are fully aware of the fact that this quasi one-dimensional Ising model can only 
yield a phase transition at zero temperature. Therefore the explicit consideration of 
the glass transition cannot 1% within the scope of our purposes; the same applies to the 
question of whether the Gibbs-di Marzio theory is appropriate to discuss glass-like 
phenomena. Rather, it should be clear from the outset that our main goal is to 
investigate the importance of a topological concept, namely that associated to the flex, 
on the dynamical properties of linear polymer chains in the simplest possible way. 

The paper is organized as follows. In the next section we present the main 
characteristics of our model for a linear polymer and derive the time evolution 
equations for the appropriate moments of the probability distribution function. In 
section 3.1 we compute the dielectric relaxation response function both for a single 
dipole and for Nnon-interacting dipoles in the limit of very long chains. In section 3.2 
we calculate the relaxational specific heat. In section 4 we discuss these results, we 
compare them with experimental data, when possible, and give some concluding 
remarks. 

2. The model Hamiltonian 

In this section we present the main features of our model for a lmear polymer chain. 
The chain is visualized as made up of N segments each of which may be found in 

two orientations with respect to the axis of the backbone chain. Interactions with the 
surroundings are responsible for random transitions between both states. In stochastic 
terms this is described by the use of a time-dependent random variable assuming the 
values 7 1, designating the two possible states. For the mth segment the assignment of 
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3 1 to um(t) would then describe the orientation~of segment m at time t .  Hence, the 
configuration of the chain~is specified by the set of values {q, u2, . . . , o , - ~ ,  uN} at any 
given timet. The cooperative interaction between adjacent segments is introduced in 
the model through an king-like Hamiltonian of the form 

1 
2 

N -  1 1 
%e= -$E’- 81) 2 0;0j+1 + - ( N -  1)(q + E?) 

i=1 

where el and e2 are the energy parameters in the Gibbs-di Marzio [l] model and 
N = x  - ~ 2  with n being the number of ‘monomers’ in the same model. The second term 
on the right-hand side of equation (1) has been included in order to recover the 
equilibrium results of the Gibbs-di Marzio lattice model. A flex occnrs in the chain 
whenever U,_, = - uj. Notice that if we identify 

N- 1 

1 
2 ( N - 1 )  ‘5 

~ ~ 2 OfJ,,, 

(2) f= - 

as the fraction of flexes with respect to the total number N -  1 of possible flexes, for a 
very Iong chain the energy computed with the HamiItonian in (1) reduces precisely to 
the Gibbs-di Marzio total intramolecular energy. 

Since flexes play a key role in such a model, we are interested in configurational 
changes in which a single flex is created or destroyed when a transition takes place. 
Therefore, we adopt as our “ l e  of transition’ one in which, if the transition is 
associated with the ith segment, all previous.segments retain their values while the ith 
and all subsequent segments change sign. Symbolically, 

T;{OI, 0 2 ,  . . . , 01, Oj+l, . . . 7 ON-lr uN}-f{Ol, 0 2 ,  . . . 2 OL-1. -Oi, -0iit.I. . . . ? -ON} (3) 
This rule may appear at first sight as rather restrictive, but on the one hand it is the 

simplest possible case involving a single flex while on the other its usefulness may be 
judged a posteriori. Other possibilities could be analysed but at the expense of more 
complicated mathematics not necessarily yielding to analytical results. 

Let P ( { f l , t )  denote the probability that the chain has the configuration 
{U,, U*, . . . , uN} at time t. Since for t+ m this probability should be proportional to the 
Boltzmann factor, using detailed balance and following the methods outlined in the 
papers by Orwoll and Stockmayer [2], Isbister and McQuame [3], Glauber [4], Snzuki 
and Kubo [5] and de Oliveira et a1 [6], one finds that the transition probabilities for our 
rule (3)  are given by 

W, = a‘ 

Wj(~;-l, o ; ) = ~ ( ~ - ~ o ~ ~ , o ; )  i = 2 , 3 , .  . . , N .~ (4) 
where a and a’ are two proportionality constants which determine the time scale of 
the motion, p =  tanh ( (c2-q)/2kBq,  kB is Boltzmann’s constant and Tis the absolute 
temperature. The form of W, takes into account the fact that if segment 1 is the one 
involved in the transition, although in principle we have a change in configuration, the 
energy of the chain remains unaltered and no flex is created or destroyed. For 
simplicity we consider that segment 1 is fixed so that a’ = 0. As far as a is concerned, 
for the time being, we will take it as a constant but it must be borne in mind that the 
time scale  of^ the motion is temperature dependent. Therefore it will come as no 
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surprise that eventually the temperature dependence of a will be an important factor 
in our later development. Using the transition probabilities given by (4), with a'=O, 
one may write a master equation for P({o"), t )  as 

N N 

dP({uq9 t )=  -E w;(u;-l, q)P({o"), t)  + wj(ui+l, -u , )P/T, { f l ,  t) .  
;=1 i=1 

dt  (5) 

The solution to (5) would of course contain the most complete description of the 
system available. However, the dynamical properties we are interested in, require 
only the knowledge of some moments of the probability P({uy, t ) .  Most of our 
attention will therefore be devoted to discussing such moments. Hence, we now 
introduce the expectation values q,(t), rj,*(t) and ~ ~ , ~ ( t ' ,  t ' + f )  defined as 

and 

where the sums run over all possible configurations compatible with our rule of 
motion, and is the expectation value of U, for a given configuration at t= t ' .  
While r;,k(t) is the equal time equilibrium correlation function, which describes 
whatever tendency the pairs of segments U; and U, may have to be correlated in 
direction at time t ,  the ~ , , ~ ( t ' .  f '  + f )  is the so-called time-delayed correlation function 
which describes correlation effects extending over an interval of length f. When 
t'-+ m , c&, t'+ t )  is the equilibrium time-dependent pair correlation function [5,6]. 
Multiplying now the master equation by the appropriate quantities and performing 
later the aforementioned summations, the following equations for the different 
expectation values are derived 

and 

These are the required time-evolution equations for the q's and the r's. As for the 
c's, following Gonqalves and de Oliveira [7] it is convenient to multiply them by a 
Heaviside step function O(t) for later performing a Fourier transform. Then we obtain 
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the following equations of motion 

dc,,,(t’, t ’+  t) 

dt 
=.-rl,l(t’)c3(t) 

d q k ( t ’ , t ’ + t )  
= - r;,x(t’)S(t) -2a(c,.k(t’, t’+t)-Bcj,k-l(t’. f ‘  + t ) )  

d t  

i=2, . . . . N -  1 k > i  

6701 

(11) 

The chain dynamical properties may be studied in terms of these equations as we 
will illustrate for the dielectric response function and the frequency-dependent 
relaxational~specific heat in the following section. 

3. Description of relaxation phenomena 

3.1. The dielectric relaxation response function 

In‘order to proceed with our calculations, a further simplification may be achieved by 
considering very long chains so that N > > l .  In such a case, end effects may be 
neglected and we may ignore in (9) to (11) those involving explicitly a subscript 1. As 
an immediate consequence of the long-chain assumption, we find in particular that the 
equilibrium solution for the r’s is given by 

r’px={(l -(I -P2)1’Z)/P}*-’={tanh((&z-&l)/4ksT)}x-i (12) 
a result that will be useful later. The second equality in (12) suggests that, in magnetic 
language, the model we have chosen is equivalent to an king model with an effective 
exchange constant J / Z ,  where J =  (E? - ~ , ) / 2 .  This is due to our dynamical rule (cf 
equation (3)) which selects some states for the possible transitions. Since only the 
formation of a single ‘domain wall’ is permitted, the energy excitations differ by an 
integer number of J/2,  while in the case where all the exdations are allowed, these 
are constructed from energy excitations J .  

Motivated by the work of Isbister and McQuarrie [3], we now place a dipole in 
segment [N/2] (where  the square brackets denote the integer part). Then the 
dielectric relaxation linear response function may be computed from 

=l-iw@(w) (13) 
where E(O)  = E ‘ ( o )  - iE”(w) is the complex dielectric constant and E, and E~ are the 
values of the dielectric constant at infinite and zero frequencies, respectively. 
Furthermore, ()cq denotes an equilibrium average. Since we are interested in calculat- 
ing bulk properties, we will assume translational invariance, which is a correct 
procedure provided we consider very long chains. This is equivalent to identifying 
r;>+,=riqand c , , ,J t ’ , t ’+ t )=c , ( t ‘ , t ’+ t )  in thelimitj>>l. Then the spatial Fourier 
transform of c,, is given by 
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(u-,(t')uq(r'+t))=C e-'q"c.(t', t '+t) .  (14) 
n 

The equilibrium response function V ( w )  requires the evaluation of the correlation 
(u-&')u,(P+t)} in the limit when P + m .  In this limit we may write [7] for the 
temporal Fourier transform 

dte-'"'c,,(t', t '+ t ) .  

With the aid of (14) and (15) and taking the limit t'-m in (11) after some 
algebraic manipulations, we arrive at 

where (u_,u,)'q, the (equilibrium) static correlation in q-space. is given by 
1 

( ' -quq) 'q=cosh((~Z-~, )12k~T)(1-~u)s4) '  (17) 

Equations (16) and (17) allow us finally to obtain @(w)  as 

(18) 
1 

1o+2a(l-fi~)'" @(o) = %(o) = . 

which when inserted in (13) yields to the dielectric response, that we will discuss later 
on. 

While the analysis of the relaxation of a single dipole in the chain has the 
advantage of simplicity, from a physical point of view it does not seem too natural to 
examine the dynamics of the whole chain in terms of what happens in a particular 
segment. Therefore we propose a different situation in which we place a dipole in each 
and every segment of the chain, but neglect dipole-dipole interactions. In this case, 
we may also compute the dielectric response function as 

It should be noted that in the previous expression we have neglected the boundary 
contributions to the relaxation function. Now, performing an analogous calculation to 
the one leading to (18) we obtain 

" 
which is the result for the non-interacting N dipoles case. Both (18) and (20) will be 
discussed and compared in section 4. 
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3.2. Relaxational specific heat 

Now we turn to the frequency-dependent energetics of the chain as represented by our 
model. Assuming again translational invariance, equation (10) reduces to 

- - 
2 -B. 0 0 ... 0 0 0 

-8, ~2 -Be 0 ... 0 0 0 
0 -p. 2 -p, ... 0 0 0 

. ... -be 2 -p. 

. ... 0 -Be 2 -  

Lo= . . ... 
. ... 

- 

where rh = rj,k with h = Ik - j l .  
Let the chain be in equilibrium with a heat bath at a temperature T,. Then the 

equilibrium values of the two segment correlation functions r;P are given by (cf 
equation (12)) 

We now subject the system to~a  periodic temperature perturbation of frequency w ,  
so that we set 

T= T, + 6T= T, + 6 Te'"' 

CL= a(TJ + $a = a(TJ + A Te'"'= a(TJ -- sech' ( - ;k;;) ATe'"'al (82 - € 1 )  

T= Tt 2 k ~  E 
where pe=tanh ( ( 8 , - ~ ~ ) / 2 k ~ T J  and sh is the hth response function to the pertur- 
bation. Moreover in (23) we have emphasized the temperature dependence of a 
whose form will be specified below (d equation (30) with T= Te). Since dr;q/dt=O, if 
terms~of order (AT)' are neglected, substitution of (23) into (22) leads to 

and ro= 

l + r c q  
r;4 + r;q I :  

The relaxational specific heat.C*(w), defined as the ratio of the change in energy 
stored in the chain to the change in temperature, is given by 
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Therefore, in order to calculate this quantity we require knowledge of sI(w). We note 
that (24) and (25) have exactly the same form as (16) and (17) in [SI. Hence, we may 
make use of the solution found therein for sl(w), which yields 

where 

2mz  sin' k, 
k, - 2N- 1 X(km)=2(1-)3,coSkm)? u y m  = 2(1 -fie cos k,). (28) 

The results embodied in (27) will be evaluated and discussed below. 

4. Results and discussion 

We start by discussing dielectric relaxation. In both cases that we have examined, the 
dielectric response function displays a Debye relaxation behaviour, i.e. 

y(r) =e-% (29) 
where tD = (241  -p2)"')-' in the single dipole case and rD =(2a(l -b))-'. for N 
non-interacting dipoles. This result, which as pointed out by Bozdemir [9] could be 
anticipated since we have neglected the interactions between the dipoles, implies that 
the frequency corresponding to the maximum of the loss curve is w,,,=l/rD. Since 
frequently the temperature dependence of the experimental data on dielectric relaxa- 
tion is presented in terms of the behaviour of logw,,, as a function of the inverse of 
the temperature, the fact that we have derived simple analytical expressions for w,.,, is 
very convenient for comparison with experiment. 

Clearly, w,,, depends on temperature through f i ,  but as it was anticipated above, a 
should also be temperature dependent. The form of this last dependence may be 
obtained by combining the ideas put forward by Adam and Gibbs [lo] connecting the 
microscopic transition probabilities in the Gibbs-di Marzio model with the inverse of 
the time scale of the motion, and the recent results by Garcia-Colin et al [ll, 121 for 
the temperature dependence of this characteristic time. Thus, if To is the temperature 
for which the configurational entropy in the Gibhs-di Marzio model goes to zero, a is 
given by (cf equation (9) in [ll]) 

1 K 

where the function F(T)  turns out to be [ll] 

A'(T+ To) C'T(T+ To) 
2 + B I T -  F ( T ) =  2 T c  

with A', B' and C' constants whose value depends on the particular material. Values 
of these constants, calculated from results of di Marzio and Dowell [I31 for six 
different polymers, appear in the table of [12]. Further, K=2.303A&kB (U being 
the chemical potential and S: the critical configurational entropy). This quantity is 
directly calculable from the equilibrim data of each substance and a table of values 
appears in [lo]. Finally, zo is also a constant whose value would vary from substance to 
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Figurel. Temperature dependence of U,, for the @ relaxation of PMA. The blobs 
correspond to the theoretical values for the single dipole model while the continuous line 
corresponds to the theoreticalvaluei for the N non-interacting dipoles model. The crosses 
are the experimental data from [13]. 

substance and in the magnetic language it would correspond to a free spin relaxation 
time. It should be stressed that if E,, z2, A ’ ,  B’, C’ and K are known for a given 
polymer, in a comparison with experimental data G, is the only adjustable parameter 
remaining in our model. 

In figure 1, we’show the results of the calculated log w,,, versus lOOO/T for PMA 
(both for the one dipole and the N non-interacting dipoles) as well as the experimental 
data for the B relaxation of the same polymer taken from [14] (cf figure 32 and note 
that we have followed the nomenclature adopted by Bur). In the calculation we have 
set G,= with the prescription given in [13], 
namely Az/k,Tg=2.25, taken the values of Tgr To, A’,  B’ and C’ from the table in [12] 
and adjusted the value of K (12.90 kcal mol-’) since no values for A,uSz/kB were 
available for this substance in [lo]. It must be stressed though that this value for K is 
reasonable given corresponding values determined experimentally for other similar 
polymers, as reported in the table of [lo]. As can be clearly seen from the figure, the 
agreement between the theoretical calculation-and the experimental data is very good. 
This agreement extends over a wide range of frequencies and temperatures and 
becomes poorer well above Ts, with the N dipole case being slightly better, irrespec- 
tive of a change in the value of K,. 

Figure 2 contains analogous results for another linear polymer, namely PVAC, 
whose equilibrium properties may also be described by the Gibbs-di Marzio model 
[13]. For this polymer, the values of all the quantities K ,  T6, To, A’,  B‘ and C’ have 
been taken from the table of [12] so the only adjustable parameter is ro, which was 
now set equal to 2 X 10-l6s, and we have reported only the N-dipoles theoretical 
result. The experimental data were obtained from figure 1 in [15] and once again we 
have adopted the terminology of Bur for this relaxation. Clearly, there is also very 
good agreement between the theoretical calculation and the experimental data for 

It is remarkable that a Debye behaviour can perform so well in the case of these 
polymers, since experimentally the description in terms of the KWW expression is 
ussually preferred. It could be argued that the Vogel-Fulcher form of (30) is 

s. computed the value for A& = z2- 

- 

PVAC. 
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responsible for the good fits of the data. Nevertheless, it is important to stress that the 
way it arises in our model, its connection with the parameters of the Gibbs-di Marzio 
model and the analytical result for the temperature dependence of U,, that we have 
obtained could not have been anticipated. Moreover, the form of the dielectric 
response (equations (18) and (ZO), respectively) is also a prediction of the present 
model that could be tested against experiment. Of course the deviations between 
theoretical values and experimental measurements of U,,, at the higher temperatures 
and frequencies suggest that most likely the Debye behaviour is lost at a certain 
crossover point where the dynamics must become more complicated than our simple 
model predicts. 

Another relevant aspect of our results that we have not discussed yet is the fact 
that if one scales the frequency w with U,,, the resulting scaled dielectric response 
function becomes universal for all polymers that may be described in terms of the 
Gibbs-di Marzio model. Thus, from, values of this function for a given substance 
computed at a particular frequency and temperature, one may in principle infer 
corresponding values for the same or for other substance at different frequencies and 
temperatures, at least in the range where the Debye behaviour holds. 

Concerning some of the other limitations of OUT model, it must be mentioned that 
it is not able to produce the bimodal distributions typical of dielectric relaxation in 
amorphous polymers [14]. We are currently investigating if the removal of the long- 
chain assumption may remedy this deficiency. 

With respect to the relaxational heat capacity, as indicated previously we have also 
made use of (30) for a(T.). Again, we have considered PMA and PVAC with the values 
for zo taken from the fits to the dielectric data. The results are displayed graphically in 
figure 3. In this case, however, we are not aware of the availability of experimental 
data with which to make comparisons. Therefore, these results are only indicative of 
the calculation and await future assessment. Nevertheless, the analytical form we have 
obtained indicates that for this response function the universality observed in the 
dielectric relaxation does not show up at least in a simple way. We have numerically 
checked that if one attempts the usual scaling of the frequency by dividing it by the 

20  zs %O 3,s. 

lO'lT W ' I  

F i y r e L  Temperature dependence of am for the p relaxation of WAC. The continuous 
line is the theoretical result and the crosses are the experimental data taken from [14]. 
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Figure3. Real (C'(o)) and imaginary (C"(w)) components of the relaxational specific 
heat for PMA and PVAC at different temperatures. Note the impressive change in the 
position of the maximum of C"(w) as one approaches T,. 

one corresponding to the maximum of the loss curve, and simultaneously scales both 
the real and imaginary parts with their respective maximum values, the apparent 
universality that holds when the temperatures are not too far apart is destroyed. It is 
interesting to stress that even in such a simple model, the universality in a wide range 
that is claimed to be a signature around the glass transition, does not arise immedi- 
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ately. We are presently investigating whether a Nagel plot [16] would restore the 
feature of universality. 

Finally, we want to point out that our results suggest that the notion of the flex, 
which is clearly related to topological constraints and of course a key element in the 
Gibbs-di Marzio model taken over into our stochastic model, seems to play not only 
an important role in determining the equilibrium properties of linear polymers, but 
also in the dynamics of these chains. The full assessment of this possibility requires 
more work on the subject, particularly in view of the fact that our rule of motion is 
clearly not realistic. This rule of motion nevertheless permits the analysis of the 
elementary dynamical event, namely the creation or destruction of a single flex, and in 
particular the derivation of analytical results. Therefore, since no simple modification 
to account for a realistic motion appears to be feasible, we favour the view of critically 
assessing the apparent success of this simple and physically appealing model before 
attempting to engage in more difficult calculations. 
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